Skip to contents
logologo

The goal of geoidep📦 is to offers R users an easy and accessible way to obtain official cartographic data on various topics, such as society🏛️, transport🚗, environment🌱, agriculture🌾, climate⛅️,among others.This includes information provided by regional government entities and technical-scientific institutions, managed by the Spatial Data Infrastructure of Peru.

Installation R

You can install the development version of geoidep like so:

install.packages('pak')
pak::pkg_install('ambarja/geoidep')

or also the official version available on CRAN:

install.packages('geoidep')

Example 01: Introduction

In this example, we can identify the list of providers available in geoidep and the layers they present.

get_data_sources() |> 
  head()
#> # A tibble: 6 × 7
#>   provider  category    layer          layer_can_be_actived admin_en year  link 
#>   <chr>     <chr>       <chr>          <lgl>                <chr>    <chr> <chr>
#> 1 INEI      General     departamento   TRUE                 Nationa… 2019  http…
#> 2 INEI      General     provincia      TRUE                 Nationa… 2019  http…
#> 3 INEI      General     distritos      TRUE                 Nationa… 2019  http…
#> 4 Midagri   Agriculture agriculture_s… TRUE                 Ministr… 2024  http…
#> 5 Midagri   Agriculture oil_palm_areas TRUE                 Ministr… 2016… http…
#> 6 Geobosque Forest      stock_bosque_… FALSE                Ministr… 2001… http…

In summary the suppliers and the number of available layers

get_providers() 
#> # A tibble: 8 × 2
#>   provider  layer_count
#>   <fct>           <int>
#> 1 Geobosque           5
#> 2 INAIGEM             3
#> 3 INEI                7
#> 4 Midagri             2
#> 5 MTC                27
#> 6 Senamhi             1
#> 7 Serfor              1
#> 8 Sernanp            61

Example 02: Download official INEI administrative boundaries

This is a simple example of how to download Peru’s official administrative boundaries:

dep <- get_departaments(show_progress = FALSE)

The first 10 rows of the original data are displayed here:

head(dep)
#> Simple feature collection with 6 features and 6 fields
#> Geometry type: MULTIPOLYGON
#> Dimension:     XY
#> Bounding box:  xmin: -79.45857 ymin: -17.28501 xmax: -70.80408 ymax: -2.986125
#> Geodetic CRS:  WGS 84
#>   id objectid ccdd   nombdep shape_length shape_area
#> 1  1        1   01  AMAZONAS    13.059047   3.199147
#> 2  2        2   02    ANCASH    11.788249   2.954697
#> 3  3        3   03  APURIMAC     7.730154   1.765933
#> 4  4        4   04  AREQUIPA    17.459435   5.330125
#> 5  5        5   05  AYACUCHO    17.127166   3.643705
#> 6  6        6   06 CAJAMARCA    12.540288   2.688386
#>                             geom
#> 1 MULTIPOLYGON (((-77.81399 -...
#> 2 MULTIPOLYGON (((-77.64697 -...
#> 3 MULTIPOLYGON (((-73.74655 -...
#> 4 MULTIPOLYGON (((-71.98109 -...
#> 5 MULTIPOLYGON (((-74.34843 -...
#> 6 MULTIPOLYGON (((-78.70034 -...